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A NOTE ON LINEAR IMPULSIVE FRACTIONAL
DIFFERENTIAL EQUATIONS

Sunc Kyu Cuor* AND NamJip Koo**

ABSTRACT. This paper deals with linear impulsive fractional differ-
ential equations involving the Caputo derivative with non-integer
order q. We provide exact solutions of linear impulsive fractional
differential equations with constant coefficient by mean of the Mittag-
Leffler functions. Then we apply the exact solutions to improve
impulsive integral inequalities with singularity.

1. Introduction

Fractional calculus is a mathematical branch investigating the prop-
erties of derivatives and integrals of non-integer orders (called fractional
derivatives and integrals). In particular, this discipline involves the no-
tion and methods of solving of fractional differential equations, i.e., dif-
ferential equations involving fractional derivatives of the unknown func-
tion. Fractional differential equations are a generalization of differen-
tial equations through the application of fractional calculus. Recently,
fractional differential equations play a significant role in modeling the
anomalous dynamics of various processes related to complex systems in
most areas of science and engineering.

The exponential function e® plays a fundamental role in mathematics
and it is really useful in theory of integer order differential equations.
We can write it in a form of series:

oo Zk

ZaT(k+1)
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The Mittag-Lefller functions which is the generalizations of exponential
function play an important role in the theory of fractional differential
equations.

We recall the notions of Mittag-Lefler functions which was originally
introduced by G. M. Mittag-Leffler in 1902(see [9]). That is, the Mittag-
Leffler function is defined by

e k
z
EQ(Z) = kE:O m, o > O,Z S C, (11)

where I' is the Gamma function given by

oo
I'(2) :/ e 't*71dt, Re(z) > 0.
0

Choi et al. [1] obtained an exact solution of linear Caputo frac-
tional differential equation by the help of the Mittag-Leffler functions.
Also, Choi et al. [2, 3] studied impulsive integral inequalities with a
non-separable kernel and stability of Caputo fractional differential equa-
tions. Denton and Vatsala [4] established the explicit representation of
the solution of the linear fractional differential equation with variable
coefficient and they developed the Gronwall integral inequality for the
Riemann-Liouville fractional differential equation.

Feckan et al. [5] studied a Cauchy problem for a fractional differential
equation with linear impulsive conditions and make a counterexample to
illustrate the concepts of piecewise continuous solutions used in current
papers are not appropriate. Also, Wang et al. [11] obtained many new
existence, uniqueness and data dependence results of solutions for non-
linear impulsive fractional differential equations with Caputo fractional
derivative via some generalized singular Gronwall inequalities.

In this paper we provide an exact solution for a linear impulsive frac-
tional differential equation with Caputo fractional derivative by mean
of the Mittag-Leffler functions. Then we apply the exact solution to
improve an impulsive integral inequality with singularity.

2. Main results

In this section we deal with linear impulsive Caputo fractional differ-
ential equations with constant coefficient. We present exact solutions of
linear impulsive fractional differential equations with Caputo fractional
derivative by the help of the Mittag-Leffler function. Also, we apply
the exact solutions to obtain singular integral inequalities of Gronwall
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type. For the general theory and applications of impulsive differential
equations, we refer the reader to [7].

Let ¢ be a positive real number such that 0 < ¢ < 1and typ,T € Ry =
[0,00). We consider the following fractional Cauchy problems

“Diu= f(t,u(t)),t #tpt € J:=[to,T],

u(to) = uo,
where CD,?O is the Caputo fractional derivative of order ¢ with the lower
limit zero, ug € R, f: J x R — R is jointly continuous, I : R — R and
tp satisfy 0 < tg <ty - <tpm < tygr = T, u(ty) = lim. o+ u(ty + €)
and u(t, ) = lim._,o- u(ty +¢) represent the right and left limits of w(t)
at t = t,. Denote by C(J,R) the set of all continuous functions from J

into R. Also, let PC(J,R) be the set of all functions from .J into R as
follows:

PC(J,R)=A{u:J — Rlu e C((tg, tx+1],R),k =0,1,--- ;m, and
there exist u(t; ) and u(t;)),k =1, -+ ,m, with u(t; ) = u(tx)}.
For the fractional calculus and the theory of fractional differential equa-
tions, we refer the reader to [6, 8, 10].

We recall the definition of Caputo fractional derivative of a function
g : [to,0) = R.

DEFINITION 2.1. [6] The Caputo fractional derivative of order q of a
function g is defined by

1 ! -
“Df g(t) F(l—q)/t (t—s)"9g'(s)ds,
0
where ¢'(t) = d%—(tt).

For the notion of solution and the existence of solutions for Equation
(2.1), see [5, 11].

LEMMA 2.2. [11] A function u € C(J,R) is a solution of the fractional
integral equation

Lo -1 I -1
u(t) = up — T /t0 (a—8)T " f(s,u(s))ds + O] /to (t—8)17" f(s,u(s))ds,

if and only if u is a solution of the following fractional Cauchy problems

{Cpgou = f(t,u(t)),t € J,

u(a) = ug, a > to. (2:2)
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LEMMA 2.3. [11] A function w € C(J,R) is a solution of the fractional
integral equation

u(to) + gy i (¢ = 5)771 f(s,u(s))ds, t € [to, t1],

u(t) = {ulto) + 3 Iult) + s [ = s u(e))as,
o tE(tk,t]H_l],k:l,'”,m,

if and only if u is a solution of Equation (2.1).

We can obtain the following result on an exact solution of homoge-
neous linear impulsive fractional differential equations by the help of the
Mittag-Lefller functions.

THEOREM 2.4. If we set f(t,u) = Au and I(u(t,)) = Bru(t, ), k =
1,2,--- ,m, with constants \ and 3y in Equation (2.1), then the solution
u(t) of Equation (2.1) is given by

uoEIg()\(t —t0)?), t € [to, t1],
ut) = uo [ [(1+ BBy (At — t0))) Eg(A(t — t0)?), t € (b, tys],
- k=1,2,---,m.
Proof. Let t € [to,t1]. Then we have
u(t) = u(to) Eq(A(t —t0)?), t € [to, ta].
Let ¢ € (t1,t2]. By Lemma 2.2, we obtain

u(t)
—u(th) - ﬁ /tol(t1 — )9 Dnu(s)ds + ﬁ /t (t — 5)7 " Au(s)ds
=1+ p)uty) — ﬁ /tll(tl —8)1  u(s)ds + ﬁ /f(t —8)7  \u(s)ds

— u(to) + Aru(ts) + ﬁ/t (t — 5)7~ hu(s)ds

= U(to)(l + ﬂlEq(A(tl — to)q)) + ﬁ\/t' (t — s)qfl)\u(s)ds, te (tl,tQ].

Thus we have

u(t) = u(to)(l + ,BlEq()\(tl — to)q)>Eq()\(t — to)q), t e (tl, tg].
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Let t € (t2,t3]. From Lemma 2.2, we obtain

u(t)
— () - ﬁ /t:(tg — ) Uu(s)ds + ﬁ /t (t — 5)7~ Au(s)ds
= (14 Bo)u(ty) — ﬁ /t;(tg —8)1 u(s)ds + ﬁ /to (t —8)9 \u(s)ds

u(to) + Pru(ty ) + Baul(ty ) + ﬁ /t (t —s)7 " Au(s)ds

= u(to)[1 + S1E,(A(t1 — t0)?) + Ba(1 + B1E;(A(t1 — o)1) Eq(A(t2 — to)?)]

I -1
+ 0 /t0 (t — )" du(s)ds
H 1+ BiEy(\(t; — t0)1)) Eg(A(t — to)?), t € (t2,t3].

Let t € (t, tr+1]. By above similar argument, we have

K
u(t) = wulto) [J(1 + BiE, —10)"))Eq(A(t —t0)?), t € (ks trt1],
=1

where k = 1,2, -+ ,m. This completes the proof. ]
To prove our main result, we need the following lemma on Caputo

fractional integral inequality of Gronwall type which can be found in
1, 8, 12].

LEMMA 2.5. Let m € C(J,Ry) and suppose that

m(t) < mo+ /t(t —8) 1 \m(s)ds, to <t <T, (2.3)

L(q) Jig

then m(t) < moEy(A(t —1t9)9), to <t <T, where my and A are nonneg-
ative constants.

We can obtain the following impulsive fractional integral inequality
by using Caputo fractional integral inequality of Gronwall type.

THEOREM 2.6. Let u € PC(J,R,) satisfying the following inequality

u(t)§c+>\/t(t—s)q1u(s)ds+ S Bultp) t > to, (24)

F(q) to to<tp<t
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where ¢, \ and Bi(k = 1,2,--- ,m) are nonnegative constants. Then

k
u(t) <c | |1+ BiEg(A(ti —t0)D)Eq(A(t —to)?),t € (tg, thy1], (2.5)

=

1
where k =1,2,--- ,m.
Proof. Let t € [ty, T]. It follows from Lemma 2.5 that
U(t) < CEQ(A(t - t(])q)a te [t()atl]’ (26)

k
u(t) < (c+ Y Bulty)Eg(A(t—t0)?), t € (th,tera],  (2.7)
=1

where £k =1,2,--- ,m.
Let t € (t1,t2]. In view of (2.6), we have
u(t) < (¢ + Bru(ty)) Eq(A(t — to)?)
= (¢ + PreEq(A(tr — 10)")) Eq(A(t — t0)?) (2.8)
= C[l + 51Eq(>\(t1 — to)q)]Eq()\(t — to)q), t e (tl, tg].
Let t € (t2,t3]. In view of (2.6) and (2.8), we have
u(t) < e+ Pru(ty) + Bau(ty )| Eg(A(t —to)?)
= e+ Bi(cEq(A(t1 = 10)))
+ Bac(l + BES(A(t1 — 10)1) Eg(A(t2 — t0) )] E(A(E — o))
= (14 BByt — t0)))(1+ BaBy(A(tz — to) )] Eg(At — 10)?)
2
= o[ [(1 + BiEg(A(t: — t0)")| Eg(A(t — t0)?), t € (ta,t].

i=1
From above similar argument, we have
k

u(t) < o[ [+ BBy At — to))) Eg(A(t — o)), € (b, T,
=1

where k = 1,2, -+ ,m. This completes the proof. ]

We can obtain the following result in [11, Lemma 2.8] as a corollary of
Lemma 2.7.

COROLLARY 2.7. Let u € PC(J,R;) satisfy the following inequality

u(t) <ei(t) + 2 /t(t =) u(s)ds + Y Bru(ty),t > to,

F(Q) to to<tp<t
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where ¢ (t) is positive continuous and nondecreasing on J, and \, B), are
nonnegative constants. Then

k

er(t) [T+ BiBy(A(ts — 1)) Eg(\(t — t0)?), t € (tk, tyal,

i=1
where k =1,2,--- ,m

u(t)

IN

Proof. Since c;(t) is positive and nondecreasing on J, we have

t At
u()§1+/(t )q1U tG(tk,tkH]
a) =" T o
where £k = 1,2, -+ ,m. From Theorem 2.6, we have
k
u(t) < e[ J(1 + BiEgA(ti — to) )] Eg (At = to)"),t € (tr, try],
i=1
where k£ = 1,2, -+ ,m. This completes the proof. ]
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