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A NOTE ON LINEAR IMPULSIVE FRACTIONAL

DIFFERENTIAL EQUATIONS

Sung Kyu Choi* and Namjip Koo**

Abstract. This paper deals with linear impulsive fractional differ-
ential equations involving the Caputo derivative with non-integer
order q. We provide exact solutions of linear impulsive fractional
differential equations with constant coefficient by mean of the Mittag-
Leffler functions. Then we apply the exact solutions to improve
impulsive integral inequalities with singularity.

1. Introduction

Fractional calculus is a mathematical branch investigating the prop-
erties of derivatives and integrals of non-integer orders (called fractional
derivatives and integrals). In particular, this discipline involves the no-
tion and methods of solving of fractional differential equations, i.e., dif-
ferential equations involving fractional derivatives of the unknown func-
tion. Fractional differential equations are a generalization of differen-
tial equations through the application of fractional calculus. Recently,
fractional differential equations play a significant role in modeling the
anomalous dynamics of various processes related to complex systems in
most areas of science and engineering.

The exponential function ez plays a fundamental role in mathematics
and it is really useful in theory of integer order differential equations.
We can write it in a form of series:

ez =
∞∑
k=0

zk

Γ(k + 1)
.
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The Mittag-Leffler functions which is the generalizations of exponential
function play an important role in the theory of fractional differential
equations.

We recall the notions of Mittag-Leffler functions which was originally
introduced by G. M. Mittag-Leffler in 1902(see [9]). That is, the Mittag-
Leffler function is defined by

Eα(z) =
∞∑
k=0

zk

Γ(kα+ 1)
, α > 0, z ∈ C, (1.1)

where Γ is the Gamma function given by

Γ(z) =

∫ ∞
0

e−ttz−1dt, Re(z) > 0.

Choi et al. [1] obtained an exact solution of linear Caputo frac-
tional differential equation by the help of the Mittag-Leffler functions.
Also, Choi et al. [2, 3] studied impulsive integral inequalities with a
non-separable kernel and stability of Caputo fractional differential equa-
tions. Denton and Vatsala [4] established the explicit representation of
the solution of the linear fractional differential equation with variable
coefficient and they developed the Gronwall integral inequality for the
Riemann-Liouville fractional differential equation.

Fečkan et al. [5] studied a Cauchy problem for a fractional differential
equation with linear impulsive conditions and make a counterexample to
illustrate the concepts of piecewise continuous solutions used in current
papers are not appropriate. Also, Wang et al. [11] obtained many new
existence, uniqueness and data dependence results of solutions for non-
linear impulsive fractional differential equations with Caputo fractional
derivative via some generalized singular Gronwall inequalities.

In this paper we provide an exact solution for a linear impulsive frac-
tional differential equation with Caputo fractional derivative by mean
of the Mittag-Leffler functions. Then we apply the exact solution to
improve an impulsive integral inequality with singularity.

2. Main results

In this section we deal with linear impulsive Caputo fractional differ-
ential equations with constant coefficient. We present exact solutions of
linear impulsive fractional differential equations with Caputo fractional
derivative by the help of the Mittag-Leffler function. Also, we apply
the exact solutions to obtain singular integral inequalities of Gronwall
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type. For the general theory and applications of impulsive differential
equations, we refer the reader to [7].

Let q be a positive real number such that 0 < q ≤ 1 and t0, T ∈ R+ =
[0,∞). We consider the following fractional Cauchy problems

CDq
t0
u = f(t, u(t)), t 6= tk, t ∈ J := [t0, T ],

∆u(tk) := u(t+k )− u(t−k ) = Ik(u(t−k )), k = 1, 2, · · · ,m,
u(t0) = u0,

(2.1)

where CDq
t0

is the Caputo fractional derivative of order q with the lower
limit zero, u0 ∈ R, f : J × R→ R is jointly continuous, Ik : R→ R and
tk satisfy 0 ≤ t0 < t1 · · · < tm < tm+1 = T , u(t+k ) = limε→0+ u(tk + ε)

and u(t−k ) = limε→0− u(tk + ε) represent the right and left limits of u(t)
at t = tk. Denote by C(J,R) the set of all continuous functions from J
into R. Also, let PC(J,R) be the set of all functions from J into R as
follows:

PC(J,R) = {u : J → R|u ∈ C((tk, tk+1],R), k = 0, 1, · · · ,m, and

there exist u(t−k ) and u(t+k ), k = 1, · · · ,m, with u(t−k ) = u(tk)}.
For the fractional calculus and the theory of fractional differential equa-
tions, we refer the reader to [6, 8, 10].

We recall the definition of Caputo fractional derivative of a function
g : [t0,∞)→ R.

Definition 2.1. [6] The Caputo fractional derivative of order q of a
function g is defined by

CDq
t0
g(t) =

1

Γ(1− q)

∫ t

t0

(t− s)−qg′(s)ds,

where g′(t) = dg(t)
dt .

For the notion of solution and the existence of solutions for Equation
(2.1), see [5, 11].

Lemma 2.2. [11] A function u ∈ C(J,R) is a solution of the fractional
integral equation

u(t) = u0 −
1

Γ(q)

∫ a

t0

(a− s)q−1f(s, u(s))ds+
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds,

if and only if u is a solution of the following fractional Cauchy problems{
CDq

t0
u = f(t, u(t)), t ∈ J,

u(a) = u0, a > t0.
(2.2)
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Lemma 2.3. [11] A function u ∈ C(J,R) is a solution of the fractional
integral equation

u(t) =


u(t0) + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, u(s))ds, t ∈ [t0, t1],

u(t0) +
∑

t0<tk<t

Ik(u(t−k )) +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds,

t ∈ (tk, tk+1], k = 1, · · · ,m,

if and only if u is a solution of Equation (2.1).

We can obtain the following result on an exact solution of homoge-
neous linear impulsive fractional differential equations by the help of the
Mittag-Leffler functions.

Theorem 2.4. If we set f(t, u) = λu and Ik(u(t−k )) = βku(t−k ), k =
1, 2, · · · ,m, with constants λ and βk in Equation (2.1), then the solution
u(t) of Equation (2.1) is given by

u(t) =


u0Eq(λ(t− t0)q), t ∈ [t0, t1],

u0

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1],

k = 1, 2, · · · ,m.

Proof. Let t ∈ [t0, t1]. Then we have

u(t) = u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1].

Let t ∈ (t1, t2]. By Lemma 2.2, we obtain

u(t)

= u(t+1 )− 1

Γ(q)

∫ t1

t0

(t1 − s)q−1λu(s)ds+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= (1 + β1)u(t−1 )− 1

Γ(q)

∫ t1

t0

(t1 − s)q−1λu(s)ds+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0) + β1u(t−1 ) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)(1 + β1Eq(λ(t1 − t0)q)) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds, t ∈ (t1, t2].

Thus we have

u(t) = u(t0)(1 + β1Eq(λ(t1 − t0)q))Eq(λ(t− t0)q), t ∈ (t1, t2].
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Let t ∈ (t2, t3]. From Lemma 2.2, we obtain

u(t)

= u(t+2 )− 1

Γ(q)

∫ t2

t0

(t2 − s)q−1λu(s)ds+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= (1 + β2)u(t−2 )− 1

Γ(q)

∫ t2

t0

(t2 − s)q−1λu(s)ds+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0) + β1u(t−1 ) + β2u(t−2 ) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)[1 + β1Eq(λ(t1 − t0)q) + β2(1 + β1Eq(λ(t1 − t0)q))Eq(λ(t2 − t0)q)]

+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)

2∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (t2, t3].

Let t ∈ (tk, tk+1]. By above similar argument, we have

u(t) = u(t0)
k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1],

where k = 1, 2, · · · ,m. This completes the proof.

To prove our main result, we need the following lemma on Caputo
fractional integral inequality of Gronwall type which can be found in
[1, 8, 12].

Lemma 2.5. Let m ∈ C(J,R+) and suppose that

m(t) ≤ m0 +
λ

Γ(q)

∫ t

t0

(t− s)q−1m(s)ds, t0 ≤ t ≤ T, (2.3)

then m(t) ≤ m0Eq(λ(t− t0)q), t0 ≤ t ≤ T , where m0 and λ are nonneg-
ative constants.

We can obtain the following impulsive fractional integral inequality
by using Caputo fractional integral inequality of Gronwall type.

Theorem 2.6. Let u ∈ PC(J,R+) satisfying the following inequality

u(t) ≤ c+
λ

Γ(q)

∫ t

t0

(t− s)q−1u(s)ds+
∑

t0<tk<t

βku(t−k ), t ≥ t0, (2.4)
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where c, λ and βk(k = 1, 2, · · · ,m) are nonnegative constants. Then

u(t) ≤ c
k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1], (2.5)

where k = 1, 2, · · · ,m.

Proof. Let t ∈ [t0, T ]. It follows from Lemma 2.5 that

u(t) ≤ cEq(λ(t− t0)q), t ∈ [t0, t1], (2.6)

u(t) ≤ (c+
k∑
i=1

βiu(t−i ))Eq(λ(t− t0)q), t ∈ (tk, tk+1], (2.7)

where k = 1, 2, · · · ,m.
Let t ∈ (t1, t2]. In view of (2.6), we have

u(t) ≤ (c+ β1u(t−1 ))Eq(λ(t− t0)q)

= (c+ β1cEq(λ(t1 − t0)q))Eq(λ(t− t0)q)

= c[1 + β1Eq(λ(t1 − t0)q)]Eq(λ(t− t0)q), t ∈ (t1, t2].

(2.8)

Let t ∈ (t2, t3]. In view of (2.6) and (2.8), we have

u(t) ≤ [c+ β1u(t−1 ) + β2u(t−2 )]Eq(λ(t− t0)q)

= [c+ β1(cEq(λ(t1 − t0)q))

+ β2c(1 + β1Eq(λ(t1 − t0)q))Eq(λ(t2 − t0)q)]Eq(λ(t− t0)q)

= c[(1 + β1Eq(λ(t1 − t0)q))(1 + β2Eq(λ(t2 − t0)q))]Eq(λ(t− t0)q)

= c[

2∏
i=1

(1 + βiEq(λ(ti − t0)q))]Eq(λ(t− t0)q), t ∈ (t2, t3].

From above similar argument, we have

u(t) ≤ c[
k∏
i=1

(1 + βiEq(λ(ti − t0)q))]Eq(λ(t− t0)q), t ∈ (tk, tk+1],

where k = 1, 2, · · · ,m. This completes the proof.

We can obtain the following result in [11, Lemma 2.8] as a corollary of
Lemma 2.7.

Corollary 2.7. Let u ∈ PC(J,R+) satisfy the following inequality

u(t) ≤ c1(t) +
λ

Γ(q)

∫ t

t0

(t− s)q−1u(s)ds+
∑

t0<tk<t

βku(t−k ), t ≥ t0,
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where c1(t) is positive continuous and nondecreasing on J , and λ, βk are
nonnegative constants. Then

u(t) ≤ c1(t)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1],

where k = 1, 2, · · · ,m.

Proof. Since c1(t) is positive and nondecreasing on J , we have

u(t)

c1(t)
≤ 1 +

λ

Γ(q)

∫ t

t0

(t− s)q−1 u(s)

c1(s)
ds+

∑
t0<tk<t

βk
u(t−k )

c1(t−k )
, t ∈ (tk, tk+1],

where k = 1, 2, · · · ,m. From Theorem 2.6, we have

u(t) ≤ c1(t)[

k∏
i=1

(1 + βiEq(λ(ti − t0)q))]Eq(λ(t− t0)q)), t ∈ (tk, tk+1],

where k = 1, 2, · · · ,m. This completes the proof.
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